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Abstract

Quantitative analysis using comprehensive two-dimensional (2D) gas chromatography (GC) is still rarely reported. This is
largely due to a lack of suitable software. The objective of the present study is to generate quantitative results from a large
GC×GC data set, consisting of 32 chromatograms. In this data set, six target components need to be quantified. We compare the
results of conventional integration with those obtained using so-called “multiway analysis methods”. With regard to accuracy
and precision, integration performs slightly better than Parallel Factor (PARAFAC) analysis. In terms of speed and possibilities
for automation, multiway methods in general are far superior to traditional integration.
© 2003 Elsevier B.V. All rights reserved.
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1. Introduction

The demand for reliable, precise and accurate data
in the analysis of complex mixtures is rapidly increas-
ing. This is partly caused by an increased demand for
comprehensive characterization of mixtures due to leg-
islation, health concerns, controlled processing, etc.
Meeting this demand requires significant technologi-
cal advances.
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One of the greatest and most significant advances
for the characterization of complex mixtures of vola-
tile compounds is comprehensive two-dimensional
(2D) gas chromatography (GC× GC). This technique
was pioneered and advocated by the late J.B. Phillips
[1,2]. In GC× GC, two GC columns are used. The
first-dimension column is (usually) a conventional
capillary GC column, with a typical internal diameter
of 250 or 320�m. Most commonly, this column con-
tains a non-polar stationary phase, so that it separates
components largely based on their vapour pressure
(isoboiling points). The second-dimension column
is considerably smaller (smaller diameter, shorter
length) than the first-dimension column, so that sepa-
rations in the second-dimension are much faster. The
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stationary phase is selected such that this column sep-
arates on properties other than just volatility, such as
molecular shape or polarity. Between the two columns,
a modulator is placed. In the modulation process,
small portions of the effluent from the first-dimension
column are accumulated and injected into the second
column. A large number of fractions are collected and
the resulting gas chromatogram contains a large se-
ries of such fast chromatograms in series (and partly
superimposed). When the second-dimension chro-
matograms are ‘demodulated[3]’, a two-dimensional
representation of the separation is obtained and
typically displayed as a color or contour plot
(Fig. 1).

Many applications have shown the advantages of
GC × GC over conventional GC, for instance the
analysis of petrochemicals[4,5], essential oils[6,7],
fatty acids [8], pesticides[9], and polychlorinated
biphenyls [10]. However, comprehensive GC× GC
is still largely a method for qualitative analysis.
Quantitative analysis by GC× GC is much less com-
monly used. The first quantitative results obtained
with GC× GC were reported by Beens et al.[11] in
1997. They applied an “in-house” integration package
called “Tweedee” for the characterization of heavy
gas oils. This program integrated 2D slices, followed
by a summation along the first-dimension. The pro-
gram worked well on baseline-separated peaks, but
it lacked sophisticated integration algorithms to cope

Fig. 1. GC× GC chromatogram of a typical synthetic perfume sample.

with less-ideal situations. Several research groups
working on GC× GC have developed their own
software for quantification[12,13].

Synovec and co-workers reported on the use of
multiway methods using the so-called “second-
order advantage” in order to retrieve quantitative
data from GC× GC [14–18]. Multiway routines,
such as the generalized rank-annihilation method
(GRAM) were demonstrated to perform well in this
respect.

For the flavor and fragrance industry, quantification
of trace compounds, such as essential-oil markers, is
of high importance. The presence of essential oils has
a big impact on both the olfactive quality and the price
of a perfume. For quality control or competitor anal-
ysis, identification and quantification of essential oils
is usually done through markers. Cheap and chemi-
cally produced alternative ingredients often co-exist in
the perfume composition. Markers are present at low
levels in the essential oils and thus at trace levels in the
entire formulation. Comprehensive GC× GC should
yield accurate concentrations and low detection limits
for these components.

This study describes the use of GC×GC to quantify
essential-oil markers in full perfumes. Our goal has
been to quantitate a limited number of target analytes
in very complex GC× GC chromatograms by using
slow, but accurate integration and fast, but slightly less
accurate multiway analytical methods.
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2. Theory

2.1. Quantification

Integration of one-dimensional (1D) chromatograms
to obtain quantitative data is well established. Typi-
cally, first- and second-order derivatives are used to
mathematically detect the peak “start”, peak top, and
peak “stop”, as well as the presence of shoulders. Al-
though far from trivial, integration is now generally
regarded as reliable, reasonably fast, and accurate.
However, for data obtained from a comprehensive
two-dimensional separation, chromatographic inte-
gration yields only data that are integrated in the
direction of the second-dimension chromatograms. A
second step has to be performed to integrate the data
along the direction of the first-dimension. This can be
done either automatically[19] or manually by draw-
ing summation boxes, as is done in the present study.

Another approach can be to utilize the “second-order
advantage”, using the two-way nature of the mea-
suring techniques. This can be achieved through
so-called “multiway techniques”, as described below.
Fraga et al.[20,21] described the application of the
Generalized Rank Annihilation Method to GC× GC
data in order to retrieve both pure-component elution
profiles and quantitative information.

2.2. Nomenclature

In this article, standardized terminology as proposed
by Kiers [22] for multiway analysis and by Schoen-
makers et al.[23] for comprehensive two-dimensional
chromatography are used.

2.3. Multivariate analysis

Standard multivariate data analysis requires data to
be arranged in a two-way structure, such as a table
or a matrix. An example is a table in spectroscopy,
where for different samples absorbances are measured
at different wavelengths. The table can be indexed by
sample number and by wavelength and therefore is
a two-way array. Two-way methods, such as princi-
pal components analysis (PCA) can be used for the
analysis of this type of data. When the relation be-
tween absorbance’s and, for instance, concentrations
is wanted, techniques such as partial least squares

(PLS) and principal component regression (PCR) can
be used. In many applications, PCA and PLS are of
prime importance. Near-infrared spectroscopy (NIR)
essentially relies on these techniques[24].

In many other cases, a two-way arrangement of
the data is not sufficient and a description in more
directions is needed. One example is the excita-
tion/emission fluorescence spectra of a set of sam-
ples. Each data element can then be indexed by the
sample number, emission wavelength, and excitation
wavelength, which imply that we have a three-way
matrix. When data can be arranged in matrices of
order three or higher, it is referred to as “multiway”
data.

Multiway methods have been applied to a wide
variety of problems[25]. Some examples are the
decomposition of fluorescence-spectroscopy data of
poly-aromatic hydrocarbons[26], the prediction of
amino acids (aa) concentrations in sugar with fluo-
rescence spectroscopy[27], data exploration of food
analysis with gas chromatography and sensory data
[28], and the calibration of liquid chromatographic
(LC) systems[29,30].

A data set obtained from comprehensive two-di-
mensional gas chromatography (GC× GC) with
flame-ionization detection (FID) can also be regarded
as three-way. When all second-dimension chro-
matograms are stacked on top of each other, each data
element can be indexed by first- and second-dimension
retention axes and by sample number and contains
an FID response. When mass spectrometry (MS) is
used, data can be regarded as a four-way arrangement
and indexed by first- and second-dimension retention
axes, a mass axis and a sample number. Each element
then contains an ion count.

Methods for multiway analysis are extensions of
existing MVA routines. PCA can be generalized to
higher order data in two different ways, Parallel Factor
Analysis (PARAFAC) and Tucker models, while PLS
can be expanded, for example, to multilinear PLS[31]
or to multiway covariates regression[32].

2.4. PARAFAC

Parallel Factor analysis is a generalization of PCA
toward higher orders. It is a true multiway tech-
nique, which decomposes a multiway dataset into
one or more combinations of vectors (“triads”). The
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Fig. 2. Schematic overview of PARAFAC analysis.

PARAFAC model was proposed in the 1970s, inde-
pendently by Carrol and Chang[33] under the name
CANDECOMP (Canonical Decomposition) and by
Harshman[34] under the name PARAFAC.

Essentially, PARAFAC models the data (Fig. 2).
In this schematic overview, the stacked chro-

matograms are represented by the matrixX with
dimensions (I × J × K). In our case,I indicates
the first-dimension fraction (retention time),J the
second-dimension retention time, andK is the specific
sample or injection.

Trilinear decomposition through PARAFAC into a
two-component model yields two triads,a1, b1, c1 and
a2, b2, c2 with the dimensionsa (I × 1), b (J × 1)
andc (K × 1). Matrix E contains the data not fitted
in this two-component model.

Each coordinate in the data cubeX can be de-
scribed by PARAFAC as the product of the first- and
second-dimension points in botha andb, multiplied
by the relative concentration inc:

x ijk =
R∑

r=1

airbjr ckr + eijk

wherexijk is the FID response at(1tR)i and (2tR)j
for the forkth sample;R the number of factors (com-
ponents);air the value of(1tR)i (first-dimension elu-
tion time i) for componentr; bjr the value for(2tR)j
(second-dimension elution timej) for componentr;
ckr the relative concentration for samplek and com-
ponentr; eijk is the residual for coordinateijk.

Described in a different (slab-wise) way the
PARAFAC decomposition is given by:

Xk = ADkB
T + Ek

whereXk is the chromatogram forkth sample (I ×J);
A the matrix containing1tR elution profile (I × R);
D the diagonal containing weights (relative concen-
trations) ofkth sample ofX (R × R) (from C); B the
matrix containing2tR elution profiles (R × J); Ek is
the residual forkth sample inX (I × J)

2.5. Constraints

In mathematical terms, empirical models are used
to describe the data as well as possible. Negative val-
ues in the estimated loadings arise if these result in a
better solution. However, negative values are often un-
desirable in chemical and physical applications. In our
case, negative FID responses and concentrations are
clearly unrealistic. By limiting the solution in the con-
centration direction to non-negative values, and peak
profiles in both retention directions to be unimodal
and non-negative, chemically meaningful results are
obtained.

2.6. Uniqueness

For many bilinear methods there is a problem con-
cerning rotational freedom. The loadings in spectral
bilinear decomposition represent linear combinations
of the rotated, pure spectra. Additional information is
required to find the true (physical) pure-component
spectra. PARAFAC, however, is capable of finding the
true underlying pure-component spectra if the data set
is truly trilinear.

The PARAFAC and PARAFAC2 equations are
solved through an alternating least squares minimiza-
tion of the residual matrix and yields direct estimates
of the concentrations without bias.

2.7. PARAFAC2

Most multiway methods assume parallel propor-
tional profiles (e.g. invariable wavelengths or elution
times). In some cases, such as batch-process analy-
sis, the time required to process a batch may vary,
resulting in unequal record lengths. In chromatog-
raphy, peaks may shift due to minor deviations in
conditions. Many multiway methods cannot deal with
such shifted (time) axes. PARAFAC2 handles shifted
profiles through the inner-product structure[35]. It
uses this property to deal with stretched time axes.

The PARAFAC2 algorithm can be described
schematically as follows:

Xk = AkDkB
T + Ek

whereAk is the matrix containing1tR elution profile
the forkth sample (I ×R) Dk the diagonal containing
weights (relative concentrations) ofkth sample ofX
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(R × R); B the matrix containing2tR elution profiles
(R × J); Ek the residual forkth sample inX (I × J)

A useful property ofAk is thatAk
TAk = ATA for

k = 1, . . . , K. In other words, the cross-product of
theA matrix is constant for all samples.

In Table 1, a simulated GC× GC peak is given
(A), while (B) and (C) are the same distribution
shifted by one and two positions, respectively. The
inner-products (ATA, BTB and CTC) yield the
square of each cell and on the diagonal the sum
of squares appears. Note the three situations yield
identical values (Fig. 3).

In literature, PARAFAC2 has been used for the
decomposition of liquid chromatography–photo-diode
array (LC–PDA) data[36] and for fault detection in
batch-process monitoring[37].

PARAFAC2 only permits the inner-structure rela-
tionship in one direction. For LC–PDA, this limita-
tion is easy to justify, as retention shifts only occur
in the LC direction. For GC× GC, however, shifts
can (and will) occur in both retention directions, but
they are not identical along the two retention axes. In
the second-dimension, a peak typically spans at least
15 points, while in the first-dimension a maximum of
seven slices encompass a peak. Therefore, the flexibil-
ity of PARAFAC2 is applied along the first-dimension
axis, to deal with differences in peak profiles between
different injections.

Table 1
Simulated GC× GC data

Situation A Situation B Situation C

0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0 0
0 0 2 0 0 0 1 0 0 0 0 0
0 1 3 1 0 0 2 0 0 0 1 0
0 3 5 3 0 1 3 1 0 0 2 0
0 1 3 1 0 3 5 3 0 1 3 1
0 0 2 0 0 1 3 1 0 3 5 3
0 0 1 0 0 0 2 0 0 1 3 1
0 0 0 0 0 0 1 0 0 0 2 0
0 0 0 0 0 0 0 0 0 0 1 0

Inner-product

0 0 0 0 0 0 0 0 0 0 0 0
0 11 21 11 0 11 21 11 0 11 21 11
0 21 53 21 0 21 53 21 0 21 53 21
0 11 21 11 0 11 21 11 0 11 21 11

Fig. 3. Visualization of shifting in GC× GC chromatograms.

2.8. Multilinear PLS

PLS regression is a method for building regression
models between independent (X) and dependent (y)
variables. First, a regression model is calculated, based
on calibration data. Decomposition is accomplished in
such a way that the computed score vectors ofX have
maximum covariance withy. Applying the model to
samples (unknowns) yields prediction ofy.

One specific extension of PLS toward higher or-
ders is called multilinear partial least squares (NPLS)
regression[31]. In this method, a multidimensional
model is constructed to describe the variance iny.

A schematic overview of NPLS is shown inFig. 4.
The NPLS method does not feature built-in con-

straints, which may lead to erroneous predictions.
Furthermore, in our case the NPLS model needs to
be trained using a calibration data set containing
only standards. This may lead to the introduction of
additional errors, since the samples contain many
more components than the calibration mixtures.

X 

c 

b 

a = 

J 

K

I 

yNPLS 

Fig. 4. Schematic NPLS model.
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Bro has used the NPLS method for the determina-
tion of fly-ash content in sugar by fluorescence spec-
troscopy [38] and for the quantification of isomers
from tandem-MS experiments[39]. According to the
nomenclature of Bro[38], the data presented in the
present article can be described by a tri-PLS1 model
(three orders inX and one order iny).

The advantage of NPLS models is their ease of use.
The construction of a model is straightforward and
there is no external regression step involved. Appli-
cation of the NPLS method directly yields concentra-
tions for the samples.

3. Experimental

3.1. Instrumentation

The GC× GC system consists of an HP6890 se-
ries GC (Agilent Technologies, Wilmington, DE,
USA), configured with a flame-ionization detector
and a Gerstel Cis-4 PTV injector (Analytical Appli-
cations, Brielle, The Netherlands) and retrofitted with
a second-generation modulator (Zoex, Lincoln, NE,
USA) as described by Phillips et al.[40]. This modu-
lator contains a rotating “Sweeper” thermal modulator
and a cassette system, which enables independent
heating of the second-dimension column.

The column-set consisted of a 10 m length×
0.25 mm i.d.× 0.25�m film thickness DB-1 col-
umn (J&W Scientific, Folsom, CA, USA). The
second-dimension column was 1.2 m × 0.1 mm ×
0.1�m DB-Wax (J&W Scientific, Folsom, CA, USA).
The modulation capillary was a 0.07 m× 0.1 mm×
3.5�m SE-54 column (Quadrex, New Haven, CT,
USA). Between the first-dimension column and the
modulator, the modulator and the second-dimension
column and the second-dimension column and the de-
tector, DPTMDS deactivated fused-silica tubing was
used (0.1 m × 0.1 mm, TSP 100200-D10; BGB An-
alytik, Anwil, Switzerland). Columns were coupled
with custom-made press-fits (Techrom, Purmerend,
The Netherlands).

The carrier gas was helium set at a pressure
of 200 kPa, resulting in a flow of approximately
0.8 ml/min at a temperature of 40◦C, except for the
second calibration mixture, which was analyzed at a
carrier gas pressure of 175 kPa, with the intention of

inducing retention time shifts and variations in the
first-dimension peak shapes.

The temperature for the first-dimension column
oven was programmed from 35◦C (5 min isother-
mal) to 225◦C (5 min isothermal) at 2◦C/min. The
second-dimension column temperature was main-
tained at 30◦C above that of the first-dimension
column during the entire experiment.

The modulator was operated at 0.25 rev/s and a slit
voltage of 70 V was used (resulting in approximately
100◦C elevation of the slotted heater relative to the
oven temperature). The modulation time (i.e. the time
between successive modulations) was 5 s.

3.2. Instrument control and data processing

The detector signal was recorded with EZ-chrom
software version 2.61, SP1 (SSE, Willemstad, The
Netherlands) with an acquisition rate of 50.08 Hz in
order to obtain a sufficient number of points across a
peak.

Data-handling was performed with software writ-
ten in Matlab R13 (The Mathworks, Natick, MA,
USA) running on a Compaq Evo 6000 equipped
with two Xeon 2.2 GHz processors and 1 Gb RAM.
Data-handling routines were developed in-house. In
addition, the NetCDF toolbox[41] and the N-way tool-
box [42] version 2.10 of the KVL Food-Technology,
Department of Dairy and Food Science, Copenhagen,
Denmark, were used.

3.3. Samples

A set of seven different perfume mixtures for dif-
ferent purposes (detergents and personal care) was
selected by Unilever’s Perfume Competence Center
(PCC). The samples contained 12 target compounds,
but this study is limited to the quantification of
essential-oil markers; that is�-terpinene, citronellyl
formate, dimethyl anthranliate, lavendulyl acetate,
eucalypthol and (−) menthone. The other six compo-
nents are not reported here due to confidentiality
issues.

The samples were diluted 10-fold with 1-propanol
(Lichrosolv grade; Merck, Darmstadt, Germany)
containing accurately weighted concentrations of
approximately 0.25%n-decane (Baker grade, min
99%; Baker, Deventer, The Netherlands) as internal
standard. Solutions were prepared in triplicate.
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Calibration mixtures of all 12 components were
prepared in the same internal-standard solution with
concentrations at five levels ranging from 10 to
1500 mg/kg. All calibration solutions were measured
in duplicate. To assess the accuracy of the quantifica-
tion methods, a second calibration mixture was made,
containing the same standards, but at concentrations
of approximately 200 mg/kg.

The calibration mixtures were measured in between
the samples. The second calibration standard was
measured using a slightly lower carrier gas pressure
(175 kPa), forcing retention variations in both the first
and second-dimensions.

In Fig. 1, a GC× GC chromatogram of a typ-
ical sample is shown. The broad peaks eluting
around 1tR = 3000 s and2tR = 3–5 s result from
dipropylene-glycol, which is used as an odourless sol-
vent in the perfume industry. Due to the high polarity
of the solvent severe wrap-around can be observed.
Wrap-around occurs when the second-dimension
retention time exceeds the modulation time and
shows up as spurious, broad peaks in subsequent
second-dimension chromatograms.

4. Data-handling and preprocessing

After acquisition and integration in EZ-Chrom, the
data were exported to Chromatograph Data File (CDF)
format and imported into the Matlab environment us-
ing the NetCDF toolbox.

4.1. Integration

In-house developed Matlab routines were used for
demodulation of both the detector output and the re-
tention times of integrated areas. The chromatographic
data is visualized through a color plot. Superpositioned
onto the color plot is the peak-apexes to visualize the
quantitative information. Different colors are used to
indicate the intensity (area) of each integrated peak.
Summated areas are calculated through a polygon
summation box and further processed in Excel (Fig. 5).

4.2. Peakfitting

Prior to the application of data analysis methods,
data pre-processing is crucial. In this case, the follow-
ing steps were used.

4.2.1. Baseline removal
The offset, drift and wander of the baseline inter-

fere with the quantitative information present in the
chromatogram. Using a routine developed in-house,
the minimum value in each modulation cycle was se-
lected to estimate a smoothed baseline in the linear
signal. The resulting baseline was subtracted from the
original chromatogram. The baseline was calculated
in such a way that no negative results in the baseline
subtracted signal were produced.

4.2.2. Data stacking
Multiway methods require the data to actually be or-

ganized in a multiway orientation. Therefore, all GC×
GC chromatograms are stacked on top of each other.
The resulting matrix has the dimensions (I × J × K)
of (1000× 250× 32).

4.2.3. Selection
Since in this study we are only interested in the

concentration profiles of individual components, only
the peaks of interest were selected. The typical se-
lection window is 5 columns (first-dimension) and 25
rows (second-dimension) wide. The remaining (se-
lected) matrix has typical dimensions of (I × J × K)
(5× 25× 32). For each of the components of interest
a separate sub-matrix was created.

4.2.4. Alignment
As in all chromatographic experiments, the actual

retention times vary slightly from run to run due
to small deviations in, for example, the temperature
profile, the flow, the sample matrix and the (manual)
injection. Shifted peaks are easily recognized by the
human eye, because peak patterns remain identical.
Thus, for user-supervised integration this is not a big
issue. Data-analysis methods, however, are extremely
sensitive towards shifts, and need a pre-processing
step in order to minimize their effects. Bylund et al.
[43] used Correlation Optimized Warping (COW)
prior to PARAFAC analysis to eliminate retention
shifts in LC–MS.

Elimination of shifts on a global scale, using all
shift information present in the entire chromatogram,
is preferred. For example, in chromatograms with a
longer injection delay all peaks shift to higher reten-
tion times. Global shifting prevents individual peaks
from being shifted to lower retention times. On a lo-



22 V.G. van Mispelaar et al. / J. Chromatogr. A 1019 (2003) 15–29

Fig. 5. Apex plot of a typical sample.

cal scale, the latter might occur, because no prior
knowledge on shift profiles for individual peaks is
present.

The observed shifts in this study are maximum 4
points in the first-dimension (20 s) and 20 points in the
second-dimension (0.4 s). The origin of these shifts is
likely to originate from differences in the sample ma-
trix, but also in operating conditions, which slightly
differ from run-to-run. Synchronization (i.e. the simul-
taneous start between data-acquisition and start of the
GC run) is solved in the hardware.

Instead of solving all retention shifts (globally), we
employed a correlation-optimized shifting based on
the so-called inner-product correlation[44] to the lo-
cal selections. The inner-product correlation is defined
as:

r(A,B) = Tr(ATB)√
Tr(ATA) × Tr(BTB)

wherer(A,B) is the correlation coefficient between ma-
trix A and matrixB; A the standard matrix;B the

sample matrix; Tr is the Trace function (sum of all
diagonal elements).

A standard was used as reference and all other
selections were aligned with this standard. By shift-
ing the selection window over a predefined grid
and simultaneously calculating the correlation, a
best-fit position was found and stored. Restricting the
permissible number of steps in the shifting process
prevents the selection of a neighboring peak belong-
ing to a different component.

The actual calculations with the PARAFAC,
PARAFAC2 and NPLS routines are simple and fast.
Decomposition of the selected submatrix (with the
dimensions 5× 25× 32) with PARAFAC takes about
1 s calculation time. PARAFAC2, and to a lesser ex-
tent NPLS, take considerably more time, but still not
exceeding half a minute. The model inputs are the
peak selection (after shifting), the number of expected
components and constraints for the calculation. Nor-
mally, one component is adequate, but if the captured
variance is too low (<80%) an extra component can
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be introduced. If the resulting calibration line does
not yield a physically realistic description, the ad-
ditional component does not contribute to a better
model.

5. Results

Conventionally, chromatograms are integrated in
order to obtain quantitative data. Thus, in the con-
text of quantitative chromatography, integration can
be regarded as a benchmark technique. The results
obtained with other, multiway methods, such as
PARAFAC, PARAFAC2, and NPLS, should not differ
from those obtained by integration.

5.1. Alignment

The most critical step in the use of mathematical
models to describe chromatographic data is align-
ment. Two chromatographic axes, as encountered in
GC×GC, make this problem even more challenging. A
global shifting routine experiences great difficulties in
dealing with ‘wrap-arounds’. Therefore, we selected a
window around a peak in the GC×GC chromatogram

Fig. 6. Results of shifting (alignment) performed on a peak in a standard mixture.

of the standard (‘reference’) sample and used it as
template. The same selection window was used for the
next injection (‘sample’) and between the two matri-
ces an inner-product correlation was calculated. The
selection window for the sample was shifted across
the chromatogram two columns to the left and to the
right and up to 10 points up or down. For each shift,
the inner-product correlation was calculated (105 shift
positions). The shift with the highest correlation was
assumed to be the best alignment. The same proce-
dure was repeated for all injections, standards as well
as samples. An inspection of the chromatograms re-
vealed that the correlation-based shifting was a good
and fast method to eliminate shifts on a local scale.

In this procedure, no interpolation was involved and
the automatic shifting of 32 injections for a single
component is completed in about 5–10 s. InFig. 6, the
result of shifting is illustrated.

It should be noted that the improvement in correla-
tion is not as dramatic in each sample as in the exam-
ple of Fig. 6. Samples containing low concentrations
of the selected components yield lower correlation
coefficients due to low signal-to-noise ratios (see
Fig. 7), but the highest value still corresponds to the
best alignment.
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Fig. 7. Results of shifting (alignment) performed on a peak in a sample.

Even for samples containing other peaks in the im-
mediate vicinity of the component of interest, shifting
based on inner-product correlation appears to work
properly.

After the alignment step, the responses are cal-
culated and corrected using the concentration and
response of the internal-standard peak. In some
samples, the selected local window contained more
than one component. A theoretical advantage of the
mathematical models described inSection 2is the
possibility of deconvolution, i.e. the reconstruction
of pure-component elution profiles from overlapping
peaks. The only condition is that the number of ex-
pected components is specified when applying the
models. Overestimation of the number of components
leads to an improved fit of the model, but the calcu-
lated factors (profiles) do not adequately describe the
real factors. Underestimation of the number of com-
ponents also can lead to anomalies in the calculated
peak profiles and responses. In the present samples
and for the selected target analytes, a single compo-
nent/factor model was sufficient to describe the vari-
ance in the local models. For samples containing two
(or more) peaks in the selection window, additional
factor(s) in the PARAFAC model can be considered.
This should result in pure-component elution profiles

for the target analyte and for the interfering compo-
nent(s). However, if the additional peaks are found
in only one or some of the samples, the introduction
of additional factor(s) results in the modeling of the
residuals of the first component. This is inherent to
the least squares criterion, which is used to minimize
the residuals. The introduction of a second factor will
always reduce the sum of squares, but it may lead to
erroneous profiles and concentrations.

The same aligned data are used as input for the
different mathematical methods. Differences in cal-
culated responses are solely originating from the
methods.

5.2. Linearity

In order to use the described methods for cali-
bration purposes, the response (corrected using the
internal standard) should vary linearly with the con-
centration. To test the linear relationship, calibration
standards between 10 and 1500 mg/kg were mea-
sured in duplicate, interspersed between the samples.
The correlation coefficient was used as a measure of
linearity.

Some differences in the correlation coefficients
obtained using the three models are expected, since
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Table 2
Correlation coefficients for all components with various quantification methods

Correlation Terpinene Citronellyl DMA Lavandulyl Eucalyptol Mentone

Integration 0.9999 0.9997 0.9997 0.9996 0.9998 0.9997
PARAFAC 0.9979 0.9983 0.9988 0.9980 0.9973 0.9993
PARAFAC2 0.9987 0.9992 0.9989 0.9979 0.9976 0.9993
NPLS 0.9985 0.9986 0.9989 0.9972 0.9980 0.9993

the ways in which the responses are calculated dif-
fer fundamentally due to constraints. In general, all
methods revealed a good linearity (Table 2). It can be
concluded that all methods result in linear relation-
ships between response and concentration. Integration
performs best with respect to linearity.

5.3. Accuracy

A second calibration standard was measured as the
last sample in this data set under slightly different
conditions (lower head pressure) to induce different
peak shapes. This standard was treated as a sample
and the concentrations were calculated for each com-
ponent with integration, PARAFAC, PARAFAC2, and
NPLS. Ideally, the calculated concentrations should
be identical to of the true values. A deviation of 5%
was thought to be acceptable.

As can be seen inFig. 8, integration performs best
for (almost) all components. PARAFAC2 and NPLS
tend to overestimate the concentrations. PARAFAC
is the most accurate of the multiway methods in

Fig. 8. Accuracy of the various quantitation methods based on the analysis of a reference mixture with known analyte concentrations.

the present case. The influence of the peak shape
seems to be more detrimental for PARAFAC2
than for PARAFAC. This result is surprising, since
PARAFAC2 should theoretically be capable of deal-
ing with shifted peaks.

5.4. Concentrations in real samples

The results for the four samples, six target com-
pounds and four quantification methods are given in
Table 3.

In four cases, there is a major difference between
the methods (DMA/sample 4, eucalypthol/sample 2
and eucalypthol/sample 6, indicated in bold). These
differences most likely to originate from the shift
routine, since the differences between the three mul-
tiway methods mutually are much smaller than that
between the multiway methods and integration. Espe-
cially at low concentrations (<10 mg/kg), multiway
methods systematically overestimate (assuming that
integration provides the right answer). This might
originate from the baseline removal, which does not
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Table 3
Concentrations (mg/kg) in real samples obtained using integration and using the multiway methods

Method Component

Terpinene Citronellyl DMA Lavandulyla Eucalyptol Menthone

M2 Integration 1830 405 16 58100 800 160
PARAFAC 1880 405 40 55000 310 150
PARAFAC2 1890 406 114 54200 480 157
NPLS 1900 407 40 53300 296 150

M4 Integration 2.2 3.8 100 123000 16 36
PARAFAC 4.3 6.8 44 115000 20 32
PARAFAC2 6.2 11.8 54 118000 23 33
NPLS 4.3 6.8 44 109000 21 32

M6 Integration 480 30 154 30300 2790 22
PARAFAC 480 34 170 31000 1330 19
PARAFAC2 498 36 254 29900 1560 22
NPLS 491 34 172 29700 1330 19

Bold numbers indicate large deviations.
a In real samples, the peak of lavandulyl acetate is perfectly co-eluting with ortho-tertairy butyl cyclohexylacetate (OTBCA) present in

concentrations up to 30% (w/w) in the sample. Both components have similar retention indices in both separation directions and completely
overlap, even in GC× GC.

allow negative baseline values. The result is a minor
offset in the baseline, which can lead to overesti-
mation at low concentrations. No experiments were
performed to verify this (i.e. via standard addition).

Surprisingly, the highest concentrations in almost
all cases are found with PARAFAC2.

5.5. Limit of quantification

The limit of detection in GC× GC is primarily de-
termined by the signal-to-noise ratio of the peaks de-
tected by the FID, which obviously is identical in all
four cases. Quantification, however, is also affected by
the ability to differentiate between signal and noise.
This is where integration and peak fitting approaches
differ. In the case of integration, the minimum-area
setting results in limits of quantification between 3
and 10 mg/kg, depending on the component of in-
terest (purity, FID response factor). In the case of
PARAFAC, PARAFAC2 and NPLS, the minimum de-
tectable amount is less easy to determine, since it is
also influenced by other samples in the data set. If, for
instance, the data set is constructed solely from sam-
ples with low concentrations, then the minimum limit
of quantification is expected to be lower then in case
of a set of highly concentrated samples with only one
dilute one. In this case, we estimate the limits of quan-

tification for the multiway methods to be in the range
of 6–20 mg/kg, somewhat higher than those obtained
with integration.

5.6. Comparison of integration and multiway
methods

The logarithmic scale forces the attention on the low
concentration part of the comparison, where the largest
deviations appear. On a logarithmic scale, the results
obtained with integration and with PARAFAC show
a linear relationship without any real inconsistencies
(Fig. 9).

The observed differences mainly appear in the low
concentration region, but is also below the LOQ.

5.7. Precision

One may expect that multiway methods yield a
lower precision than conventional integration. This is
probably true for simple (gas) chromatograms contain-
ing only a limited number of peaks, but in this par-
ticular case it turns out that precision is comparable,
if relative standard deviations are taken into account.
In Fig. 10, the relative standard deviation (R.S.D.)
between triplicates as function of the calculated con-
centration is given. It appears that the three multiway
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Quantitative comparison

1

10

100

1000

10000

100000

1000000

1 10 100 1000 10000 100000 1000000

Benchmark (integration) [mg/kg]

C
al

cu
la

te
d

 c
o

n
ce

n
tr

at
io

n
 [

m
g

/k
g

]

PARAFAC

PARAFAC2

NPLS

Fig. 9. Comparison of the quantitative results obtained with integration and with various multiway methods.

methods do not substantially have higher R.S.D. com-
pared to integration. Differences appear in the low
concentration region (<10 mg/kg), where the multi-
way methods are expected to perform worse.

On average, multiway methods do not perform sub-
stantially worse compared to integration with respect
to precision.
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Fig. 10. Errors obtained by different quantitative methods as function of the analyte concentration for seven target analytes.

5.8. Speed

The rigorous quantification of large GC× GC
data sets with integration is a very time-consuming
exercise. It requires about 2 min per component per
chromatogram to integrate GC×GC slices, due to the
manual combination of peaks. For the present data set
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of 32 injections and 13 components, 13 h of analyst
effort were required to integrate all peaks. Further
processing with Excel takes another 3 h. This could
be improved by the use of routines that combines the
successive apexes. However, this would lead to large
result tables containing all the combined slices. From
this, a selection has to be made from components of
interest.

The quantification by PARAFAC or NPLS takes
only 2 min per component, regardless of the num-
ber of chromatograms. In the present study, 30 min
proved sufficient to fully quantify all the target com-
ponents in all the chromatograms. Further processing
in Excel is easier (about 1.5 h), since PARAFAC and
NPLS yield an array of concentrations that can be di-
rectly imported. In total, integration takes about 16 h,
whereas PARAFAC and NPLS require about 2 h for
the total set.

6. Conclusions

Obviously, integration is the preferred method for
accurately determining concentrations in GC× GC.
This method is, however, very time-consuming
and labor-intensive. Multiway methods, such as
PARAFAC analysis, its extension PARAFAC2, and
multilinear partial least squares, are all capable of
estimating concentrations in the chromatograms. Es-
pecially constrained PARAFAC yields concentrations
comparable to integration in terms of accuracy and
precision.

Due to different approaches in the multiway meth-
ods, a dramatic increase in productivity is found.
Integration requires about 16 h for the quantification
of 13 components in 32 chromatograms, whereas
PARAFAC and NPLS require only 2 h. This aspect
becomes increasingly important in the context of new
GC × GC instruments equipped with jet-modulators
and autosamplers. The jet-modulators permit higher
data-acquisition rates (at least 100 Hz) and yield the
potential of increased numbers of peaks, while au-
tosampler units allow large numbers of analyses to
give rise to large data sets.

The shifting routine developed for the multiway
approach seems to work satisfactory on the data set
described in this paper. However, more experience is
required to arrive at more definitive conclusions.

It is also found in the present study that PARAFAC2
and, to a lesser extent, NPLS overestimate concentra-
tions in comparison with integration. For NPLS, this
can be partly explained by the fact that the method cali-
brates using pure-component chromatograms, but pre-
dicts on multicomponent samples. For PARAFAC2,
however, this comes as a surprise, since the method
was thought to be able to deal with retention shifts en-
countered in the first-dimension chromatograms, due
to the inner-product structure. One of the reasons for
this may be the fact that peaks in the first-dimension
are not shifted, but show a different peak profile,
which is referred to in literature as “in-phase” and
“out-phase” modulation[23]. This phenomenon leads
to differences in the inner-structure property, but
would only partially explain the systematic overesti-
mation of the concentrations obtained by this method.
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